Rabu, 18 Maret 2015

Hukum-hukum Dasar Termodinamika

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

HUKUM AWAL (ZEROTH LAW) TERMODINAMIKA
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.


HUKUM PERTAMA TERMODINAMIKA
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.

HUKUM KEDUA TERMODINAMIKA
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

HUKUM KETIGA TERMODINAMIKA
Hukum ketiga termodinamika terkait dengan temperatur nol absolut. Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum. Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

HUKUM HUKUM TERMODINAMIKA

  1. Hukum Pertama Termodinamika
Pada dasarnya merupakan hukum konservasi energi, yaitu: energi tidak dapat diciptakan maupun dimusnahkan; energi hanya dapat diubah dari satubentuk menjadi bentuk yang lain.

Pengertian yang lebih hakiki tentang hukum pertama termodinamika menyatakan bahwa jika satu sistem mengalami serangkaian perubahan yang tidak terbatas kembali kekeadaan semula, maka total perubahan energi adalah nol.

Hal ini menerangkan pada kita bahwa energi merupakan fungsi keadaan. (Hardjono Sastrohamidjojo kimia dasar gajah mada university press) persamaannya dapat dinyatakan sebagai berikut:
ΔE = q + w
ΔE = perubahan energi internal.
q = panas (kalor)
Jika sistem menyerap panas, maka energi sistem bertambah (q>0)
Jika sistem melepas panas, maka energi sistem berkurang (q<0) style="color: rgb(51, 51, 255);">
w = kerja (usaha).
Jika sistem melakukan kerja, maka energi sistem berkurang (w<0)>0)

Jika E akhir awal sama, maka DE = 0

2. Hukum Kedua

Hukum kedua termodinamika terkait dengan entropi.
Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.
ΔS=Q/T
Kalor mengalir secara alami dari benda yang panas ke benda yang dingin, kalor tidak akan mengalir secara spontan dari benda dingin ke benda panas.

3. Hukum KeTiga "Hukum Kenol"

Hukum ketiga termodinamika terkait dengan
temperatur nol absolut.
Hukum ini menyatakan bahwa pada saat suatu sistem mencapai temperatur nol absolut, semua proses akan berhenti dan entropi sistem akan mendekati nilai minimum.

Hukum ini juga menyatakan bahwa entropi benda berstruktur kristal sempurna pada temperatur nol absolut bernilai nol.

Ada 3 hukum termodinamika  sbb:
1. Hukum kekekalan energi:
Energi tidak dapat diciptakan dan tidak dapat dihancurkan/dihilangkan. Tetapi dapat ditransfer dengan berbagai cara.

Aplikasi: Mesin-mesin pembangkit energi dan pengguna energi. Semuanya hanya mentransfer energi, tidak menciptakan dan menghilangkan.

Catatan: Dengan adanya kesetaraan massa dan energi dari Einstein, energi "seolah-olah" bisa diciptakan dari materi (massa). Sehingga sekarang diamandemen menjadi "Hukum kekekalan massa-energi". Ketiga hukum tetmodinamika untuk energi jadi berlaku juga untuk massa.


2. Hukum keseimbangan / kenaikan entropi: Panas tidak bisa mengalir dari material yang dingin ke yang lebih panas secara spontan. Entropi adalah tingkat keacakan energi. Jika satu ujung material panas, dan ujung satunya dingin, dikatakan tidak acak, karena ada konsentrasi energi. Dikatakan entropinya rendah. Setelah rata menjadi hangat, dikatakan entropinya naik.

Aplikasi: Kulkas harus mempunyai pembuang panas di belakangnya, yang suhunya lebih tinggi dari udara sekitar. Karena jika tidak Panas dari isi kulkas tidak bisa terbuang keluar.


3. Hukum suhu 0 Kelvin (-273,15 Celcius): Teori termodinamika menyatakan bahwa panas (dan tekanan gas) terjadi karena gerakan kinetik dalam skala molekular. Jika gerakan ini dihentikan, maka suhu material tsb akan mencapai 0 derajat kelvin.

Aplikasi: Kebanyakan logam bisa menjadi superkonduktor pada suhu sangat rendah, karena tidak banyak keacakan gerakan kinetik dalam skala molekular yang menggangu aliran elektron.


Sistem termodinamika adalah bagian dari jagad raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

1. sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.

2. sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:

a.pembatas adiabatik: tidak memperbolehkan pertukaran panas.

b.pembatas rigid: tidak memperbolehkan pertukaran kerja.

3.sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.
Termodinamika
        Termodinamika adalah kajian tentang kalor (panas) yang berpindah. Dalam termodinamika kamu akan banyak membahas tentang sistem dan lingkungan. Kumpulan benda-benda yang sedang ditinjau disebut sistem, sedangkan semua yang berada di sekeliling (di luar) sistem disebut lingkungan.
Usaha Luar
Usaha luar dilakukan oleh sistem, jika kalor ditambahkan (dipanaskan) atau kalor dikurangi (didinginkan) terhadap sistem. Jika kalor diterapkan kepada gas yang menyebabkan perubahan volume gas, usaha luar akan dilakukan oleh gas tersebut. Usaha yang dilakukan oleh gas ketika volume berubah dari volume awal V1 menjadi volume akhir V2 pada tekanan p konstan dinyatakan sebagai hasil kali tekanan dengan perubahan volumenya.
W = pV= p(V2V1)
Secara umum, usaha dapat dinyatakan sebagai integral tekanan terhadap perubahan volume yang ditulis sebagai
Tekanan dan volume dapat diplot dalam grafik pV. jika perubahan tekanan dan volume gas dinyatakan dalam bentuk grafik pV, usaha yang dilakukan gas merupakan luas daerah di bawah grafik pV. hal ini sesuai dengan operasi integral yang ekuivalen dengan luas daerah di bawah grafik.
Gas dikatakan melakukan usaha apabila volume gas bertambah besar (atau mengembang) dan V2 > V1. sebaliknya, gas dikatakan menerima usaha (atau usaha dilakukan terhadap gas) apabila volume gas mengecil atau V2 < V1 dan usaha gas bernilai negatif.
Energi Dalam
Suatu gas yang berada dalam suhu tertentu dikatakan memiliki energi dalam. Energi dalam gas berkaitan dengan suhu gas tersebut dan merupakan sifat mikroskopik gas tersebut. Meskipun gas tidak melakukan atau menerima usaha, gas tersebut dapat memiliki energi yang tidak tampak tetapi terkandung dalam gas tersebut yang hanya dapat ditinjau secara mikroskopik.
Berdasarkan teori kinetik gas, gas terdiri atas partikel-partikel yang berada dalam keadaan gerak yang acak. Gerakan partikel ini disebabkan energi kinetik rata-rata dari seluruh partikel yang bergerak. Energi kinetik ini berkaitan dengan suhu mutlak gas. Jadi, energi dalam dapat ditinjau sebagai jumlah keseluruhan energi kinetik dan potensial yang terkandung dan dimiliki oleh partikel-partikel di dalam gas tersebut dalam skala mikroskopik. Dan, energi dalam gas sebanding dengan suhu mutlak gas. Oleh karena itu, perubahan suhu gas akan menyebabkan perubahan energi dalam gas. Secara matematis, perubahan energi dalam gas dinyatakan sebagai
untuk gas monoatomik
untuk gas diatomik
Dimana ∆U adalah perubahan energi dalam gas, n adalah jumlah mol gas, R adalah konstanta umum gas (R = 8,31 J mol−1 K−1, dan ∆T adalah perubahan suhu gas (dalam kelvin).
Hukum I Termodinamika
Jika kalor diberikan kepada sistem, volume dan suhu sistem akan bertambah (sistem akan terlihat mengembang dan bertambah panas). Sebaliknya, jika kalor diambil dari sistem, volume dan suhu sistem akan berkurang (sistem tampak mengerut dan terasa lebih dingin). Prinsip ini merupakan hukum alam yang penting dan salah satu bentuk dari hukum kekekalan energi.
Gambar
Sistem yang mengalami perubahan volume akan melakukan usaha dan sistem yang mengalami perubahan suhu akan mengalami perubahan energi dalam. Jadi, kalor yang diberikan kepada sistem akan menyebabkan sistem melakukan usaha dan mengalami perubahan energi dalam. Prinsip ini dikenal sebagai hukum kekekalan energi dalam termodinamika atau disebut hukum I termodinamika. Secara matematis, hukum I termodinamika dituliskan sebagai
Q = W + ∆U
Dimana Q adalah kalor, W adalah usaha, dan ∆U adalah perubahan energi dalam. Secara sederhana, hukum I termodinamika dapat dinyatakan sebagai berikut.
Jika suatu benda (misalnya krupuk) dipanaskan (atau digoreng) yang berarti diberi kalor Q, benda (krupuk) akan mengembang atau bertambah volumenya yang berarti melakukan usaha W dan benda (krupuk) akan bertambah panas (coba aja dipegang, pasti panas deh!) yang berarti mengalami perubahan energi dalam U.
Proses Isotermik
Suatu sistem dapat mengalami proses termodinamika dimana terjadi perubahan-perubahan di dalam sistem tersebut. Jika proses yang terjadi berlangsung dalam suhu konstan, proses ini dinamakan proses isotermik. Karena berlangsung dalam suhu konstan, tidak terjadi perubahan energi dalam (∆U = 0) dan berdasarkan hukum I termodinamika kalor yang diberikan sama dengan usaha yang dilakukan sistem (Q = W).
Proses isotermik dapat digambarkan dalam grafik pV di bawah ini. Usaha yang dilakukan sistem dan kalor dapat dinyatakan sebagai
Dimana V2 dan V1 adalah volume akhir dan awal gas.
Proses Isokhorik
Jika gas melakukan proses termodinamika dalam volume yang konstan, gas dikatakan melakukan proses isokhorik. Karena gas berada dalam volume konstan (∆V = 0), gas tidak melakukan usaha (W = 0) dan kalor yang diberikan sama dengan perubahan energi dalamnya. Kalor di sini dapat dinyatakan sebagai kalor gas pada volume konstan QV.
QV = ∆U
Proses Isobarik
Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku
Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan
QV =∆U
Dari sini usaha gas dapat dinyatakan sebagai
W = QpQV
Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).
Proses Adiabatik
Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = ∆U).
Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai
Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).
Proses adiabatik dapat digambarkan dalam grafik pV dengan bentuk kurva yang mirip dengan grafik pV pada proses isotermik namun dengan kelengkungan yang lebih curam.

Contoh Soal


1. Diagram PV di bawah ini menunjukkan siklus pada suatu gas. Tentukan usaha total yang dilakukan oleh gas!
     Jawaban:
     Usaha (W) = luas daerah di bawah grafik PV
     W = {(3-1) x 105 } x (5-3) = 4 x 105 J

2. Suatu gas dalam wadah silinder tertutup mengalami proses seperti pada gambar di bawah ini.
Tentukan usaha yang dilakukan oleh gas pada:
    a. proses AB
    b. Proses BC
    c. proses CA
    d. Keseluruhan proses ABCA
Jawaban:
  1. Usaha dari A ke B sama dengan luas ABDE dan bertanda positif karena arah proses ke kanan
                (VB > VA ). 
                WAB = luas ABDE = AB x BD
                                    = (100-25) L x (300 kPa)
                                    = (75 x 10-3 m3) (300 x 103 Pa)
                                    = 22.500 J
     b. Usaha dari B ke C sama dengan negatif luas BCED karena arah proses ke kiri (VC < VB ).
                WBC  = - luas BCDE = - ½ (CE + BD) ED
                                  = - ½ (100+300) kPa x (100-25) L
                                  = - ½ (400 x 103 Pa) (75 x 10-3 m3)
                                  = -15 000 J = -15 kJ
    c. Usaha dari CA sama dengan nol karena CA dengan sumbu V tidak membentuk bidang (luasnya = 0).
    d. Usaha keseluruhan proses (ABCA) sama dengan usaha proses AB + usaha proses BC + usaha CA
                WABCA = 22 500 – 15 000 + 0 = 7500 J
3.  Suatu gas ideal berada di dalam wadah bervolume 3 liter pada suhu 270C. Gas itu dipanaskan dengan tekanan tetap 1 atmosfer sampai mencapai suhu 2270C. hitung kerja yang dilakukan gas!
Penyelesaian:
Diketahui:
PA = PB = 1 atm = 105 Pa
VA = 3 liter = 3 x 10-3 m3
TA = 273 + 27 = 300 K
TB = 273 + 227 = 500 K
Ditanya: W?
Jawab:
Pada proses isobarik (tekanan tetap) berlaku:
VA/TA = VB/TB
(3 x 10-3)/500 = VB/300
VB = 5 x 103 m3
Sehingga,
W = P (VB – VA) = (105) {(5x10-3) - (3x10-3)} = 202,6 J
4. Tiga mol gas memuai secara isotermal pada suhu 270C, sehingga volumenya berubah dari 20 cm3 menjadi 50 cm3. Hitung besar usaha yang dilakukan gas tersebut!
Penyelesaian:
Diketahui:
n = 3 mol
R = 8,314 J/mol K
T  = 270C + 273 = 300 K
V1 = 2 x 10-5 m3
V2 = 5 x 10-5 m3
Ditanya: W?
Jawab:
W = n R T ln V2/V1 = (3) (8,314) (300) ln 5 x 10-5/2 x 10-5 = 6852,94 J
5. Suatu gas memiliki volume awal 2,0 m3 dipanaskan dengan kondisi isobaris hingga volume akhirnya menjadi 4,5 m3. Jika tekanan gas adalah 2 atm, tentukan usaha luar gas tersebut!
(1 atm = 1,01 x 105 Pa)
 Penyelesaian:
Diketahui:

V2 = 4,5 m3
V1 = 2,0 m3
P = 2 atm = 2,02 x 105 Pa
Isobaris → Tekanan Tetap

W = P (ΔV)
W = P(V2 − V1)
W = 2,02 x 105 (4,5 − 2,0) = 5,05 x 105 joule

 6. Sejumlah 1,5 m3 gas helium yang bersuhu 27oC dipanaskan secara isobarik sampai 87oC. Jika tekanan gas helium 2 x 105 N/m2 , gas helium melakukan usaha luar sebesar….
 Penyelesaian:
 Diketahui:
V1 = 1,5 m3
T1 = 27oC = 300 K
T2 = 87oC = 360 K
P = 2 x 105 N/m2
Ditanya: W?
Jawab:
W = PΔV
Mencari V2 :
V2/T2 = V1/T1
V2 = ( V1/T1 ) x T2 = ( 1,5/300 ) x 360 = 1,8 m3
W = PΔV = 2 x 105(1,8 − 1,5) = 0,6 x 105 = 60 x 103 = 60 kJ

Tidak ada komentar:

Posting Komentar